National Academy of Sciences on 2012 Disaster


Depiction of solar particles interacting with Earth’s magnetosphere

COGwriter

If there were not enough problems now, a study put out by the National Academy of Sciences suggests a possible catastrophic disaster caused by solar outbursts:

Space storm alert: 90 seconds from catastrophe
New Scientist – March 23, 2009

It is midnight on 22 September 2012 and the skies above Manhattan are filled with a flickering curtain of colourful light. Few New Yorkers have seen the aurora this far south but their fascination is short-lived. Within a few seconds, electric bulbs dim and flicker, then become unusually bright for a fleeting moment. Then all the lights in the state go out. Within 90 seconds, the entire eastern half of the US is without power.

A year later and millions of Americans are dead and the nation’s infrastructure lies in tatters. The World Bank declares America a developing nation. Europe, Scandinavia, China and Japan are also struggling to recover from the same fateful event – a violent storm, 150 million kilometres away on the surface of the sun.

It sounds ridiculous. Surely the sun couldn’t create so profound a disaster on Earth. Yet an extraordinary report funded by NASA and issued by the US National Academy of Sciences (NAS) in January this year claims it could do just that.

Over the last few decades, western civilisations have busily sown the seeds of their own destruction. Our modern way of life, with its reliance on technology, has unwittingly exposed us to an extraordinary danger: plasma balls spewed from the surface of the sun could wipe out our power grids, with catastrophic consequences.

The projections of just how catastrophic make chilling reading. “We’re moving closer and closer to the edge of a possible disaster,” says Daniel Baker, a space weather expert based at the University of Colorado in Boulder, and chair of the NAS committee responsible for the report.

It is hard to conceive of the sun wiping out a large amount of our hard-earned progress. Nevertheless, it is possible. The surface of the sun is a roiling mass of plasma – charged high-energy particles – some of which escape the surface and travel through space as the solar wind. From time to time, that wind carries a billion-tonne glob of plasma, a fireball known as a coronal mass ejection. If one should hit the Earth’s magnetic shield, the result could be truly devastating.

The incursion of the plasma into our atmosphere causes rapid changes in the configuration of Earth’s magnetic field which, in turn, induce currents in the long wires of the power grids. The grids were not built to handle this sort of direct current electricity. The greatest danger is at the step-up and step-down transformers used to convert power from its transport voltage to domestically useful voltage. The increased DC current creates strong magnetic fields that saturate a transformer’s magnetic core. The result is runaway current in the transformer’s copper wiring, which rapidly heats up and melts. This is exactly what happened in the Canadian province of Quebec in March 1989, and six million people spent 9 hours without electricity. But things could get much, much worse than that.

Worse than Katrina

The most serious space weather event in history happened in 1859. It is known as the Carrington event, after the British amateur astronomer Richard Carrington, who was the first to note its cause: “two patches of intensely bright and white light” emanating from a large group of sunspots. The Carrington event comprised eight days of severe space weather.

There were eyewitness accounts of stunning auroras, even at equatorial latitudes. The world’s telegraph networks experienced severe disruptions, and Victorian magnetometers were driven off the scale.

Though a solar outburst could conceivably be more powerful, “we haven’t found an example of anything worse than a Carrington event”, says James Green, head of NASA’s planetary division and an expert on the events of 1859. “From a scientific perspective, that would be the one that we’d want to survive.” However, the prognosis from the NAS analysis is that, thanks to our technological prowess, many of us may not.

There are two problems to face. The first is the modern electricity grid, which is designed to operate at ever higher voltages over ever larger areas. Though this provides a more efficient way to run the electricity networks, minimising power losses and wastage through overproduction, it has made them much more vulnerable to space weather. The high-power grids act as particularly efficient antennas, channelling enormous direct currents into the power transformers.

The second problem is the grid’s interdependence with the systems that support our lives: water and sewage treatment, supermarket delivery infrastructures, power station controls, financial markets and many others all rely on electricity. Put the two together, and it is clear that a repeat of the Carrington event could produce a catastrophe the likes of which the world has never seen. “It’s just the opposite of how we usually think of natural disasters,” says John Kappenman, a power industry analyst with the Metatech Corporation of Goleta, California, and an advisor to the NAS committee that produced the report. “Usually the less developed regions of the world are most vulnerable, not the highly sophisticated technological regions.”

According to the NAS report, a severe space weather event in the US could induce ground currents that would knock out 300 key transformers within about 90 seconds, cutting off the power for more than 130 million people (see map). From that moment, the clock is ticking for America.

First to go – immediately for some people – is drinkable water. Anyone living in a high-rise apartment, where water has to be pumped to reach them, would be cut off straight away. For the rest, drinking water will still come through the taps for maybe half a day. With no electricity to pump water from reservoirs, there is no more after that.

There is simply no electrically powered transport: no trains, underground or overground. Our just-in-time culture for delivery networks may represent the pinnacle of efficiency, but it means that supermarket shelves would empty very quickly – delivery trucks could only keep running until their tanks ran out of fuel, and there is no electricity to pump any more from the underground tanks at filling stations.

Back-up generators would run at pivotal sites – but only until their fuel ran out. For hospitals, that would mean about 72 hours of running a bare-bones, essential care only, service. After that, no more modern healthcare.

The truly shocking finding is that this whole situation would not improve for months, maybe years: melted transformer hubs cannot be repaired, only replaced. “From the surveys I’ve done, you might have a few spare transformers around, but installing a new one takes a well-trained crew a week or more,” says Kappenman. “A major electrical utility might have one suitably trained crew, maybe two.”

Within a month, then, the handful of spare transformers would be used up. The rest will have to be built to order, something that can take up to 12 months.

Even when some systems are capable of receiving power again, there is no guarantee there will be any to deliver. Almost all natural gas and fuel pipelines require electricity to operate. Coal-fired power stations usually keep reserves to last 30 days, but with no transport systems running to bring more fuel, there will be no electricity in the second month.

Nuclear power stations wouldn’t fare much better. They are programmed to shut down in the event of serious grid problems and are not allowed to restart until the power grid is up and running.

With no power for heating, cooling or refrigeration systems, people could begin to die within days. There is immediate danger for those who rely on medication. Lose power to New Jersey, for instance, and you have lost a major centre of production of pharmaceuticals for the entire US. Perishable medications such as insulin will soon be in short supply. “In the US alone there are a million people with diabetes,” Kappenman says. “Shut down production, distribution and storage and you put all those lives at risk in very short order.”

Help is not coming any time soon, either. If it is dark from the eastern seaboard to Chicago, some affected areas are hundreds, maybe thousands of miles away from anyone who might help. And those willing to help are likely to be ill-equipped to deal with the sheer scale of the disaster. “If a Carrington event happened now, it would be like a hurricane Katrina, but 10 times worse,” says Paul Kintner, a plasma physicist at Cornell University in Ithaca, New York.

In reality, it would be much worse than that. Hurricane Katrina’s societal and economic impact has been measured at $81 billion to $125 billion. According to the NAS report, the impact of what it terms a “severe geomagnetic storm scenario” could be as high as $2 trillion. And that’s just the first year after the storm. The NAS puts the recovery time at four to 10 years. It is questionable whether the US would ever bounce back.

“I don’t think the NAS report is scaremongering,” says Mike Hapgood, who chairs the European Space Agency’s space weather team. Green agrees. “Scientists are conservative by nature and this group is really thoughtful,” he says. “This is a fair and balanced report.”

Such nightmare scenarios are not restricted to North America. High latitude nations such as Sweden and Norway have been aware for a while that, while regular views of the aurora are pretty, they are also reminders of an ever-present threat to their electricity grids. However, the trend towards installing extremely high voltage grids means that lower latitude countries are also at risk. For example, China is on the way to implementing a 1000-kilovolt electrical grid, twice the voltage of the US grid. This would be a superb conduit for space weather-induced disaster because the grid’s efficiency to act as an antenna rises as the voltage between the grid and the ground increases. “China is going to discover at some point that they have a problem,” Kappenman says…

The world will, most probably, yawn at the prospect of a devastating solar storm until it happens. Kintner says his students show a “deep indifference” when he lectures on the impact of space weather. But if policy-makers show a similar indifference in the face of the latest NAS report, it could cost tens of millions of lives, Kappenman reckons. “It could conceivably be the worst natural disaster possible,” he says.

The report outlines the worst case scenario for the US. The “perfect storm” is most likely on a spring or autumn night in a year of heightened solar activity – something like 2012. Around the equinoxes, the orientation of the Earth’s field to the sun makes us particularly vulnerable to a plasma strike.

What’s more, at these times of year, electricity demand is relatively low because no one needs too much heating or air conditioning. With only a handful of the US grid’s power stations running, the system relies on computer algorithms shunting large amounts of power around the grid and this leaves the network highly vulnerable to sudden spikes.

If ACE has failed by then, or a plasma ball flies at us too fast for any warning from ACE to reach us, the consequences could be staggering. “A really large storm could be a planetary disaster,” Kappenman says…

“The Carrington event happened during a mediocre, ho-hum solar cycle,” Kintner says. “It came out of nowhere, so we just don’t know when something like that is going to happen again.”  http://www.prisonplanet.com/space-storm-alert-90-seconds-from-catastrophe.html

Our family saw the movie “The Knowing” yesterday and it appears similar to the above (except the alien part, which was probably the most boring part of the movie)–but the devastation was faster in the Hollywood version.

Truth is that no one knows when there will be solar flareups or other events that could trigger massive devastation on the earth.  While the Bible seems to be clear that the Great Tribulation cannot begin before 2012, various sorrows are predicted prior to then.

The fact that scientists, more and more, are recognizing that the planet faces severe problems in the future, should drive Christians to their knees and into their Bibles to study, watch, and pray.

Some articles that might be of assistance in understanding end-time events may include:

End of Mayan Calendar 2012–Might 2012 Mean Something?There is a Mayan calendar prediction for change in 2012. 2012 changes were also centuries ago predicted by the Hopi Native Americans. Do Mayan/Hindu/Hopi/Buddhist/New Age/Nostradaumus prophecies have any value here? Why might Satan have inspired this date? Does the Dresden codex show destruction of the earth by flood? Can the great tribulation start before 2012?
Does God Have a 6,000 Year Plan? What Year Does the 6,000 Years End? Was a 6000 year time allowed for humans to rule followed by a literal thousand year reign of Christ on Earth taught by the early Christians? When does the six thousand years of human rule end?
Can the Great Tribulation Begin in 2009, 2010, or 2011? Can the Great Tribulation begin today? When is the earliest that the Great Tribulation can begin? What is the Day of the Lord?
Who Are The Two Witnesses? What is their job? What does the Bible reveal? What has the Church of God taught on this subject? Might even Roman Catholic prophecies give some clues here?
Four Horsemen of the Apocalypse What is the Book of Revelation trying to tell us about them? Does the first one deceive many?



Get news like the above sent to you on a daily basis

Your email will not be shared. You may unsubscribe at anytime.